;;; dash-functional.el --- Collection of useful combinators for Emacs Lisp -*- lexical-binding: t -*-
;; Copyright (C) 2013-2014 Matus Goljer, Magnar Sveen
;; Authors: Matus Goljer
;; Magnar Sveen
;; Version: 1.2.0
;; Package-Requires: ((dash "2.0.0") (emacs "24"))
;; Keywords: lisp functions combinators
;; This program is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; This program is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with this program. If not, see .
;;; Commentary:
;; Collection of useful combinators for Emacs Lisp
;;
;; See documentation on https://github.com/magnars/dash.el#functions
;;; Code:
(require 'dash)
(defun -partial (fn &rest args)
"Takes a function FN and fewer than the normal arguments to FN,
and returns a fn that takes a variable number of additional ARGS.
When called, the returned function calls FN with ARGS first and
then additional args."
(apply 'apply-partially fn args))
(defun -rpartial (fn &rest args)
"Takes a function FN and fewer than the normal arguments to FN,
and returns a fn that takes a variable number of additional ARGS.
When called, the returned function calls FN with the additional
args first and then ARGS."
(lambda (&rest args-before) (apply fn (append args-before args))))
(defun -juxt (&rest fns)
"Takes a list of functions and returns a fn that is the
juxtaposition of those fns. The returned fn takes a variable
number of args, and returns a list containing the result of
applying each fn to the args (left-to-right)."
(lambda (&rest args) (mapcar (lambda (x) (apply x args)) fns)))
(defun -compose (&rest fns)
"Takes a list of functions and returns a fn that is the
composition of those fns. The returned fn takes a variable
number of arguments, and returns the result of applying
each fn to the result of applying the previous fn to
the arguments (right-to-left)."
(lambda (&rest args)
(car (-reduce-r-from (lambda (fn xs) (list (apply fn xs)))
args fns))))
(defun -applify (fn)
"Changes an n-arity function FN to a 1-arity function that
expects a list with n items as arguments"
(apply-partially 'apply fn))
(defun -on (operator transformer)
"Return a function of two arguments that first applies
TRANSFORMER to each of them and then applies OPERATOR on the
results (in the same order).
In types: (b -> b -> c) -> (a -> b) -> a -> a -> c"
(lambda (x y) (funcall operator (funcall transformer x) (funcall transformer y))))
(defun -flip (func)
"Swap the order of arguments for binary function FUNC.
In types: (a -> b -> c) -> b -> a -> c"
(lambda (x y) (funcall func y x)))
(defun -const (c)
"Return a function that returns C ignoring any additional arguments.
In types: a -> b -> a"
(lambda (&rest _) c))
(defmacro -cut (&rest params)
"Take n-ary function and n arguments and specialize some of them.
Arguments denoted by <> will be left unspecialized.
See SRFI-26 for detailed description."
(let* ((i 0)
(args (mapcar (lambda (_) (setq i (1+ i)) (make-symbol (format "D%d" i)))
(-filter (-partial 'eq '<>) params))))
`(lambda ,args
,(--map (if (eq it '<>) (pop args) it) params))))
(defun -not (pred)
"Take an unary predicates PRED and return an unary predicate
that returns t if PRED returns nil and nil if PRED returns
non-nil."
(lambda (x) (not (funcall pred x))))
(defun -orfn (&rest preds)
"Take list of unary predicates PREDS and return an unary
predicate with argument x that returns non-nil if at least one of
the PREDS returns non-nil on x.
In types: [a -> Bool] -> a -> Bool"
(lambda (x) (-any? (-cut funcall <> x) preds)))
(defun -andfn (&rest preds)
"Take list of unary predicates PREDS and return an unary
predicate with argument x that returns non-nil if all of the
PREDS returns non-nil on x.
In types: [a -> Bool] -> a -> Bool"
(lambda (x) (-all? (-cut funcall <> x) preds)))
(defun -iteratefn (fn n)
"Return a function FN composed N times with itself.
FN is a unary function. If you need to use a function of higher
arity, use `-applify' first to turn it into an unary function.
With n = 0, this acts as identity function.
In types: (a -> a) -> Int -> a -> a.
This function satisfies the following law:
(funcall (-iteratefn fn n) init) = (-last-item (-iterate fn init (1+ n)))."
(lambda (x) (--dotimes n (setq x (funcall fn x))) x))
(defun -fixfn (fn)
"Return a function that computes the (least) fixpoint of FN.
FN is a unary function, results are compared with `equal'.
In types: (a -> a) -> a -> a."
(lambda (x)
(let ((re (funcall fn x)))
(while (not (equal x re))
(setq x re)
(setq re (funcall fn re)))
re)))
(defun -prodfn (&rest fns)
"Take a list of n functions and return a function that takes a
list of length n, applying i-th function to i-th element of the
input list. Returns a list of length n.
In types (for n=2): ((a -> b), (c -> d)) -> (a, c) -> (b, d)
This function satisfies the following laws:
(-compose (-prodfn f g ...) (-prodfn f' g' ...)) = (-prodfn (-compose f f') (-compose g g') ...)
(-prodfn f g ...) = (-juxt (-compose f (-partial 'nth 0)) (-compose g (-partial 'nth 1)) ...)
(-compose (-prodfn f g ...) (-juxt f' g' ...)) = (-juxt (-compose f f') (-compose g g') ...)
(-compose (-partial 'nth n) (-prod f1 f2 ...)) = (-compose fn (-partial 'nth n))"
(lambda (x) (-zip-with 'funcall fns x)))
(provide 'dash-functional)
;;; dash-functional.el ends here